The Numerical Range of a Matrix

Kristin A. Camenga and Patrick X. Rault, joint work with Dan Rossi, Tsvetanka Sendova, and Ilya M. Spitkovsky

Houghton College and SUNY Geneseo

January 13, 2015
Definition (Numerical Range)

Let A be an $n \times n$ matrix with entries in \mathbb{C}. Then the numerical range of A is given by

$$W(A) = \{\langle Ax, x \rangle : x \in \mathbb{C}^n, \|x\| = 1\} = \{x^* Ax : x \in \mathbb{C}^n, \|x\| = 1\}.$$
Some Examples

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & i & 0.5 \\ 0 & 0 & -i \end{bmatrix} \]

\[B = \begin{bmatrix} -1 & 2 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \]
Basic Properties

The numerical range of a matrix, $W(A)$ is a compact and convex subset of \mathbb{C}.

![Diagram 1](image1.png)

![Diagram 2](image2.png)
The numerical range of a matrix, $W(A)$ is a compact and convex subset of \mathbb{C}.

$W(A)$ also contains the eigenvalues of A.

Proof: If λ is an eigenvalue of A, then we pick a corresponding unit eigenvector, x. Then $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle = \lambda$.
A matrix U is unitary if $U^*U = I$ or $U^{-1} = U^*$.

If U is a unitary $n \times n$ matrix, $W(U^*AU) = W(A)$ for any $n \times n$ matrix A. We say $W(A)$ is invariant under unitary similarities.

If A is unitarily reducible, that is, unitarily similar to the direct sum $A_1 \oplus A_2$, then $W(A)$ is the convex hull of $W(A_1) \cup W(A_2)$.

$$A_1 \oplus A_2 = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$
Unitarily Reducible Example

\[
A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & i \\ 1 & 3 \end{bmatrix}, \quad A_1 \oplus A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & i \\ 0 & 0 & 1 & 3 \end{bmatrix}
\]
A square matrix A is *normal* if $A^* A = AA^*$. A matrix is normal if and only if it is unitarily similar to a diagonal matrix. In this case, A is unitarily reducible to a direct sum of 1×1 matrices which are its eigenvalues, so $W(A)$ is the convex hull of its eigenvalues.

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 - i & 0 & 0 & 0 \\ 0 & 0 & 1 + i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
Characterizing Shapes: 2×2 matrices

If A is an irreducible 2×2 matrix, $W(A)$ is an ellipse with foci at the eigenvalues.

$$A = \begin{bmatrix} 0 & 3 \\ -1 & 4 \end{bmatrix}$$
Characterizing Shapes: 3×3 matrices
A doubly stochastic matrix is one whose real number entries are non-negative and each row and column sums to 1. For example:

\[
\begin{bmatrix}
\frac{2}{5} & 0 & \frac{2}{5} & \frac{1}{5} \\
\frac{2}{5} & 0 & \frac{1}{5} & \frac{3}{5} \\
0 & \frac{3}{5} & 0 & \frac{2}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{2}{5} & 0
\end{bmatrix}
\]

Key fact: Every doubly stochastic matrix is unitarily reducible to the direct sum of the matrix [1] with another matrix:

\[U^* AU = [1] \oplus A_1,\]

where \(U\) is a unitary matrix with real entries.
Given the characterization of shapes of the numerical range for 3×3 matrices and unitary reducibility $U^T A U = [1] \oplus A_1$, there are three possibilities:

- $W(A_1)$ is the convex hull of a point and an ellipse (with the point lying either inside or outside the ellipse);
- the boundary of $W(A_1)$ contains a flat portion, with the rest of it lying on a 4th degree algebraic curve;
- $W(A_1)$ has an ovular shape, bounded by a 6th degree algebraic curve.

All possibilities occur in these three categories and we can characterize which occurs.
Theorem

Let A be a 4×4 doubly stochastic matrix. Then the boundary of $W(A)$ consists of elliptical arcs and line segments if and only if

$$\mu := \text{tr} A - 1 + \frac{\text{tr} A^3 - \text{tr}(A^T A^2)}{\text{tr}(A^T A) - \text{tr} A^2}$$

is an eigenvalue of A (multiple, if $\mu = 1$). If, in addition,

$$\alpha = \text{tr} A - 1 - 3\mu > 0, \beta = (\text{tr} A - 1 - 3\mu)^2 - \text{tr}(A^T A) + 1 + 2(\det A) / \mu + \mu^2 > 0,$$

then $W(A)$ also has corner points at μ and 1, and thus four flat portions on the boundary. Otherwise, 1 is the only corner point of $W(A)$; and $\partial W(A)$ consists of two flat portions and one elliptical arc.
4×4 D-S examples: ellipses and line segments

$\alpha = 7/24, \beta = -59/576$

$\alpha \approx 0.65, \beta \approx 0.31$

$\alpha = 43/96, \beta = -779/9216$

$\alpha \approx 0.77, \beta \approx 0.21$
4 × 4 D-S Examples: 4th degree curves and flat portions

4th degree curves and 1 with flat portion on the left

4th degree curve and 1 with flat portion on the right
4×4 D-S Examples: Ovular
Let $A_\phi = Ae^{i\phi}$.

- $W(A)$ vs. $W(A_\phi)$
Graphing the boundary of the numerical range

Let $A_\phi = Ae^{i\phi}$.

- $W(A)$ vs. $W(A_\phi)$
- $H_\phi := \frac{A_\phi + A^*_\phi}{2}$, $K_\phi := \frac{A_\phi - A^*_\phi}{2i}$
- $W(H_\phi) = \text{Re}(W(A_\phi)) = [\lambda_{\text{min}}, \lambda_{\text{max}}]$.
- $H_\phi \nu = \lambda_{\text{max}} \nu$.
 $\lambda_{\text{max}} = \langle H_\phi \nu, \nu \rangle = \text{Re} \langle A \nu, \nu \rangle$.
- $\langle A \nu, \nu \rangle \in W(A)$.
- Singularity: $W(A_\phi)$ has a vertical flat portion $\Rightarrow \lambda_{\text{max}}$ has multiplicity 2
Graphing the boundary of the numerical range

Let $A_{\phi} = Ae^{i\phi}$.

- $W(A)$ vs. $W(A_{\phi})$
- $H_{\phi} := \frac{A_{\phi} + A_{\phi}^*}{2}$, $K_{\phi} := \frac{A_{\phi} - A_{\phi}^*}{2i}$
- $W(H_{\phi}) = \text{Re}(W(A_{\phi})) = [\lambda_{\text{min}}, \lambda_{\text{max}}]$.
- $H_{\phi}v = \lambda_{\text{max}}v$.
 $\lambda_{\text{max}} = \langle H_{\phi}v, v \rangle = \text{Re}\langle Av, v \rangle$.
- $\langle Av, v \rangle \in W(A)$.
- Singularity: $W(A_{\phi})$ has a vertical flat portion $\Rightarrow \lambda_{\text{max}}$ has multiplicity 2

Alternative (Kippenhahn, 1951): Let $F(x : y : t) := \det(H_0x + K_0y + lt)$. Then $W(A)$ is the convex hull of the dual curve to $F(x : y : t) = 0$.
The Gau-Wu number

Definition

(Gau-Wu number, 2013)

\[k(A) = \max \# \{x_1, \ldots, x_k \} \]

\[\forall j, \langle Ax_j, x_j \rangle \in \partial W(A) \]

\{x_1, \ldots, x_k\} orthonormal

\{x_1, \ldots, x_k\} \subset \mathbb{C}^n

Basic results:

- \(1 \leq k(A) \leq n \)
- Points on parallel support lines of \(W(A) \) come from orthogonal vectors.
Basic results:

- $1 \leq k(A) \leq n$
- $k(A) \geq 2$ if $n \geq 2$

Figure: $A \in M_2(\mathbb{C})$. $k(A) = 2$
Basic examples

Basic results:

- \(1 \leq k(A) \leq n \)
- \(k(A) \geq 2 \) if \(n \geq 2 \)

Figure: \(A \in M_2(\mathbb{C}). \ k(A) = 2 \)

- Vertical flat portion \(\ell_1 \Rightarrow \) pair of orthogonal eigenvectors \(u, v \) of \(H_0 \), with \(\langle Bu, u \rangle, \langle Bv, v \rangle \in \ell_1 \cap \partial W(B) \).

Figure: \(B \in M_3(\mathbb{C}) \)
Basic examples

Basic results:

- $1 \leq k(A) \leq n$
- $k(A) \geq 2$ if $n \geq 2$

Figure: $A \in M_2(\mathbb{C})$. $k(A) = 2$

- Vertical flat portion $\ell_1 \Rightarrow$ pair of orthogonal eigenvectors u, v of H_0, with $\langle Bu, u \rangle, \langle Bv, v \rangle \in \ell_1 \cap \partial W(B)$.
- Let ℓ_2 be a parallel support line, and let $\langle Aw, w \rangle \in \ell_2 \cap \partial W(B)$. Then $w \perp u, w \perp v$.
Basic examples

Basic results:
- \(1 \leq k(A) \leq n\)
- \(k(A) \geq 2\) if \(n \geq 2\)

Figure: \(A \in M_2(\mathbb{C}). k(A) = 2\)

- Vertical flat portion \(\ell_1 \Rightarrow\) pair of orthogonal eigenvectors \(u, v\) of \(H_0\), with \(\langle Bu, u \rangle, \langle Bv, v \rangle \in \ell_1 \cap \partial W(B)\).
- Let \(\ell_2\) be a parallel support line, and let \(\langle Aw, w \rangle \in \ell_2 \cap \partial W(B)\). Then \(w \perp u, w \perp v\).
- Thus \(k(B) = 3\).
Example 1 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with $F(x : y : t) = 0$ a curve having two nodes.

Dual curve:

- Vertical flat portion $\ell_1 \Rightarrow$ pair of orthogonal eigenvectors u, v of H_0, with $\langle Au, u \rangle, \langle Av, v \rangle \in \ell_1 \cap \partial W(A)$.
- Let ℓ_2 be a parallel support line, and let $\langle Aw, w \rangle \in \ell_2 \cap \partial W(A)$. Then $w \perp u$, $w \perp v$.
Example 1 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with $F(x : y : t) = 0$ a curve having two nodes.

Dual curve:

- Vertical flat portion $\ell_1 \Rightarrow$ pair of orthogonal eigenvectors u, v of H_0, with $\langle Au, u \rangle, \langle Av, v \rangle \in \ell_1 \cap \partial W(A)$.
- Let ℓ_2 be a parallel support line, and let $\langle Aw, w \rangle \in \ell_2 \cap \partial W(A)$. Then $w \perp u, w \perp v$.
- Thus $k(A) = 4$.
Example 2 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with $F(x : y : t) = 0$ a curve having three nodes. Dual curve:
Example 2 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with $F(x : y : t) = 0$ a curve having three nodes. Dual curve:

Lemma

(C,R,S,S, 2015) Let $A \in M_4(\mathbb{C})$, $H_\phi := (A_\phi + A_\phi^*)/2$. $S = \{\phi : H_\phi$ has a maximum e-value of multiplicity ≥ 2. Then:

1. $\forall \phi \in S$, H_ϕ has exactly three distinct eigenvalues $\Rightarrow k(A) < 4$.

Rault & Camenga
Example 2 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with $F(x : y : t) = 0$ a curve having three nodes.

Dual curve:

Lemma

$S = \{\phi : H_\phi \text{ has a maximum e-value of multiplicity } \geq 2\}$. Then:

1. $\forall \phi \in S, H_\phi \text{ has exactly three distinct eigenvalues } \Rightarrow k(A) < 4.$
2. $S \neq \emptyset \Rightarrow k(A) > 2.$
Example 2 of an irreducible 4×4 matrix

Let $A \in M_4(\mathbb{C})$ irreducible, with

$F(x : y : t) = 0$ a curve having three nodes.

Dual curve:

Lemma

$S = \{\phi : H_\phi \text{ has a maximum e-value of multiplicity } \geq 2\}$. Then:

1. $\forall \phi \in S$, H_ϕ has exactly three distinct eigenvalues $\Rightarrow k(A) < 4$.
2. $S \neq \emptyset \Rightarrow k(A) > 2$.

Thus $k(A) = 3$.
Example in $M_7(\mathbb{C})$

$$A = \begin{bmatrix}
 a & c & 0 & \ldots & 0 \\
 b & a & c & \ddots & \vdots \\
 0 & \ddots & \ddots & \ddots & 0 \\
 \vdots & \ddots & b & a & c \\
 0 & \ldots & 0 & b & a
\end{bmatrix}$$

The numerical range of a 7×7 tri-diagonal Toeplitz matrix, with $a = 5 + 4i$, $b = -1 + i$, $c = -3$.

Theorem

$(C, R, S, S, 2014) \ k(A) = \left\lceil \frac{n}{2} \right\rceil$.

